9,309 research outputs found

    Multimode Phonon Cooling via Three Wave Parametric Interactions with Optical Fields

    Full text link
    We discuss the possible cooling of different phonon modes via three wave mixing interactions of vibrational and optical modes. Since phonon modes exhibit a variety of dispersion relations or frequency spectra with diverse spatial structures, depending on the shape and size of the sample, we formulate our theory in terms of relevant spatial mode functions for the interacting fields in any given geometry. We discuss the possibility of Dicke like collective effects in phonon cooling and present explicit results for simultaneous cooling of two phonon modes via the anti-Stokes up conversions. We show that the bimodal cooling should be observable experimentally

    Surface-enhanced second-harmonic generation at a metallic grating

    Get PDF
    The theory of surface-enhanced second-harmonic generation at a metallic grating is developed. Using the form of the nonlinear source polarization given by Bloembergen et al. [Phys. Rev. 174, 813 (1968)], we solve Maxwell's equations to obtain the fields at the second-harmonic frequency. The calculations are done up to second order in the surface-roughness parameter. These perturbation expressions are used to evaluate numerically the second-harmonic intensity, in various directions, produced by a plane wave incident on a metallic grating. The resonant enhancement in the second-harmonic intensity due to surface-plasmon excitation at fundamental frequency ω is discussed and the results compared with some recent experimental observations. The second-harmonic fields are also shown to get enhancement due to excitation of surface plasmons at 2ω; these, however, correspond to local-field enhancements at 2ω and are evanescent in nature

    Surface-enhanced Raman scattering in a two-oscillator electromagnetic model

    Get PDF
    A two-oscillator model is considered to investigate the effect of a metal substrate of dielectric function ε(ω) on the Raman scattering from a molecule absorbed on the metal surface. In the presence of the metal and an external electric field, the linear motion of the electronic and ionic oscillators in the molecule get coupled, in general. For obtaining Raman scattering at the Stokes frequency, a phenomenological nonlinear force term, which is bilinear in the oscillator amplitudes, is introduced in the equation of motion. The whole problem is considerably simplified when we use the fact that the ionic mass is much larger than the electronic mass and the ionic vibration frequency is much smaller than the electronic and optical frequencies. It is shown that because of different renormalization factors the frequency dependence of the enhancement factor F, taken to be the ratio of Raman intensity with and without the metal, is quite different from that calculated by using the familiar polarizability-derivative theory. Applying the well-known fluctuation-dissipation theorem, the new Raman line shape is also calculated to contrast it with the corresponding line shape in the absence of the metal

    Hydrostatic pressure effect on Tc of new BiS2 based Bi4O4S3 and NdO0.5F0.5BiS2 layered superconductors

    Full text link
    We investigate the external hydrostatic pressure effect on the superconducting transition temperature (Tc) of new layered superconductors Bi4O4S3 and NdO0.5F0.5BiS2. Though the Tc is found to have moderate decrease from 4.8 K to 4.3 K (dTconset/dP = -0.28 K/GPa) for Bi4O4S3 superconductor, the same increases from 4.6 K to 5 K (dTconset/dP = 0.44 K/GPa) upto 1.31 GPa followed by a sudden decrease from 5 K to 4.7 K upto 1.75 GPa for NdO0.5F0.5BiS2 superconductor. The variation of Tc in these systems may be correlated to increase or decrease of the charge carriers in the density of states under externally applied pressure.Comment: 3 pages text +Fig

    Surface-enhanced nonlinear-optical processes in molecules in a two-oscillator electromagnetic model

    Get PDF
    A two-oscillator electromagnetic model is used to find the effect of a solid or a metal substrate of dielectric function ε(ω) on several nonlinear optical processes in a molecule adsorbed on the surface. In particular, the case of the second-order optical mixing, the stimulated Raman scattering, the third-order polarizability for the four-wave mixing, and the case of two-photon absorption in the molecule have been considered explicitly in the approximation in which the ionic oscillator frequency is assumed to be small compared with both the electronic oscillator frequency and the optical frequencies involved. The two-oscillator model considered here, with a trilinear coupling potential function, is the same as the one recently used by us to investigate the spontaneous Raman process. From our analysis it is quite clear that the enhancement, if any, in each of the processes involves (1) the enhancement of each of the incident optical fields E→ in to E→ (0) at the molecular site, (2) the renormalization of the effective nonlinear polarizabilities at short molecular distances from the surface, and (3) the change of the outgoing radiation propagator (Green's function) from the free-space G0 to G, due to the presence of the surface. For a metal surface of a given shape, each of these factors may contain possible surface-plasmon-polariton resonances at various frequencies involved

    Is there Evidence for a Hubble bubble? The Nature of Type Ia Supernova Colors and Dust in External Galaxies

    Get PDF
    We examine recent evidence from the luminosity-redshift relation of Type Ia Supernovae (SNe Ia) for the 3σ\sim 3 \sigma detection of a ``Hubble bubble'' -- a departure of the local value of the Hubble constant from its globally averaged value \citep{Jha:07}. By comparing the MLCS2k2 fits used in that study to the results from other light-curve fitters applied to the same data, we demonstrate that this is related to the interpretation of SN color excesses (after correction for a light-curve shape-color relation) and the presence of a color gradient across the local sample. If the slope of the linear relation (β\beta) between SN color excess and luminosity is fit empirically, then the bubble disappears. If, on the other hand, the color excess arises purely from Milky Way-like dust, then SN data clearly favors a Hubble bubble. We demonstrate that SN data give β2\beta \simeq 2, instead of the β4\beta \simeq 4 one would expect from purely Milky-Way-like dust. This suggests that either SN intrinsic colors are more complicated than can be described with a single light-curve shape parameter, or that dust around SN is unusual. Disentangling these possibilities is both a challenge and an opportunity for large-survey SN Ia cosmology.Comment: Further information and data at http://qold.astro.utoronto.ca/conley/bubble/ Accepted for publication in ApJ

    A Preliminary Indication of Evolution of Type Ia Supernovae from their Risetimes

    Full text link
    We have compared the risetime for samples of nearby and high-redshift type Ia supernovae (SNe Ia). The fiducial risetime of the nearby SNe Ia is 2.5+/-0.4 days longer than the proemial risetime determined by Goldhaber (1998a,b) for high-redshift SNe Ia from the Supernova Cosmology Project. The statistical likelihood that the two samples have different fiducial risetimes is high (5.8 sigma) and indicates possible evolution between the samples of SNe Ia. We consider the likely effects of several sources of systematic error, but none of these resolves the difference in the risetimes. Currently, we cannot directly determine the impact of the apparent evolution on previous determinations of cosmological parameters.Comment: Accepted by the Astronomical Journal, 11 pages, 5 figure

    On the Theory of Emission of Alpha-Particles from Radioactive Nuclei

    Get PDF
    corecore